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HIGHLIGHTS 
• Sensory inputs are slow, noisy, and 
fragmentary and require neural mechanisms to 
organize them and allow for action. 
• Internal Models are predictive mechanisms 
within the CNS that simulates the real world 
and organize sensory inputs to produce motor 
commands. 
• Internal Models are central for the control, 
learning and adaptation of motor skills. 
• There are two functionaly distinct but 
interconnected models: the Inverse and the 
Forward Models. 
• Internal Models approach present substantial 
internal coherence and has a large and 
growing body of empirical evidences. 
 
ABBREVIATIONS 
BG Basal Ganglia 
CNS Central nervous system 
FM Forward Models 
GC  Granule cells 
IvM Inverse Model 
MC Motor Cortex 
M1 Primary motor cortex 
g Gravity 
m Mass 
t Time 
α Acceleration 
Ø Angular distance 
ω Angular velocity 
τ∫∫(b-c) Inverse kinetics 
α∫∫(b-c) Processed inverse kinematics 
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ABSTRACT 

Interacting with the environment requires a remarkable ability to control, learn, and adapt motor skills to ever-
changing conditions. The intriguing complexity involved in the process of controlling, learning, and adapting 
motor skills has led to the development of many theoretical approaches to explain and investigate motor 
behavior. This paper will present a theoretical approach built upon the top-down mode of motor control that 
shows substantial internal coherence and has a large and growing body of empirical evidence: The Internal 
Models. The Internal Models are representations of the external world within the CNS, which learn to predict this 
external world, simulate behaviors based on sensory inputs, and transform these predictions into motor actions. 
We present the Internal Models’ background based on two main structures, Inverse and Forward models, 
explain how they work, and present some applicability. 
 
KEYWORDS: Forward model | Inverse model | Motor control | Motor learning | Motor adaptation 

 

INTRODUCTION 

Human beings interact with the environment, which requires a remarkable ability to 
control, learn, and adapt motor skills to changing environmental conditions. The intriguing 
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complexity involved in this ability has instigated many studies under different backgrounds. 
For instance, some backgrounds propose a bottom-up mode of control, while others 
propose motor skills are controlled top-down. This paper will present a theoretical 
approach built upon the top-down mode of motor control that shows substantial internal 
coherence and has a large body of empirical evidence to explain the control, learning, and 
adaptation of motor actions: The Internal Models. 

The concept of Internal Models was firstly introduced by Kenneth Craik (1943)1 in 
his work The Nature of Explanation, and researchers further developed this background 
using Biological2 and Math methods.3,4 Internal Models are neural representations of the 
external world5, which, therefore, learn to predict the external world (e.g., predictive 
models), simulate behaviors based on sensory inputs, and transform them into motor 
actions.6 

The main rationale for the Internal Models proposal in biological systems is related 
to the capacity to simulate the dynamics of specific aspects from the environment. For 
example, a person who, at the same time, bounces and looks at the ball and sees when 
the ball touches the hand that produces a sound, a pressure encoding senses information 
as different inputs. All of the information is simultaneously generated, but each input 
travels at a particular speed activating specific cortical areas on the central nervous 
system (CNS). Besides, since these signals are noisy and reach the CNS belated, the 
sensory inputs related to the same phenomena are fragmented and present different 
natures. Such characteristics pose a wide variety of problems for the person to move and 
interact with the environment. The sensorimotor system needs to integrate these inputs to 
allow proper moving. Furthermore, it might somehow use the information provided by 
these stimuli in a predictive fashion to estimate a future state of the environment and the 
body. All these conditions lead to the proposal of Internal Models for motor control, which 
posits that the biological systems do not use direct information of the environment and the 
body to act but do so using Internal Models of reality. 

Generally, Internal Model theories propose two kinds of Internal Models working 
together, the Inverse Model and the Forward Model.7 The inverse model inverts the causal 
relationship of movement production (i.e., inverse dynamics) by using sensory information 
about the desired end-state and transforming it into motor commands.8,9 For example, to 
perform a shot in a team handball game, the sensorimotor system uses visual inputs 
from the context (e.g., distance) to activate an Inverse Model that estimates the velocity 
and acceleration profiles appropriate for shooting and transforms them into motor 
commands. However, such a handball shot requires fast and accurate movements, and 
the command the inverse model produces may not be so precise, which requires some 
correction. In this case, the Forward Model uses afferent and efferent information to predict 
the outcome based on environmental and body conditions10 and update the motor 
commands. When there is a discrepancy between the intended action and the predictions 
of the forward model, it adjusts the commands before they leave the brain.11 Consequently, 
the Internal Models background can explain motor actions' control, learning, and 
adaptation, including fast actions. In this paper, we present Internal Models’ background 
based on Inverse and Forward models, explain how they produce motor actions, and 
present some applicability. 
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INVERSE MODEL 
Consider a team handball player shooting to the goal. There is a variety of 

possible spots and shot types to choose. After choosing the desired spot, how will this 
player perform the shot? How is the desired action actually transformed into real action? 
To answer these questions, behavioral12 and neurophysiological findings13,14 suggest the 
existence of a neural mechanism named Inverse Model (IvM), which is responsible for 
carrying out the processes required to transform the desired action into motor commands 
(Figure 1-A). Moreover, these processes have been extensively investigated in 
computational, behavioral, cognitive, and neurophysiological studies.15-17 

Three main approaches point out the existence of Inverse Models for motor control, 
the Direct Inverse Modeling,18 the Feedback Error Learning,19,20 and the Supervised 
Learning.15 In which concerns motor control, these three approaches propose that the IvM 
triggers a feedforward motor command to produce the motor action (Figure 1). However, 
they differ in the way they explain how an actual movement is controlled and how the IvM 
is formed and/or updated (for a general overview, see Jordan, 199621). 

Generally, Inverse Models work in parallel with Forward Models (FM – discussed 
later in this paper), as Figure 1 illustrates. The IvM produces a motor command based on 
the desired action, information about the body, and the environment (initial conditions). 
Since the IvM does not directly receive feedback input about the ongoing action and its 
predictive capacity may not be fine-tuned to the context, the motor command might not be 
appropriate. Therefore, the FM updates the motor command and the IvM itself (Figure 1-C). 
The updating signal from the FM works as a training to the IvM.22 In short, the IvM is 
responsible for triggering the motor command, and the FM supervises the activity and 
trains the IvM. The following section will present the roles and functions of the IvM. 

 

Figure 1. Inverse Models work in parallel with Forward Models. 
 

Functioning and roles of the IvM 
  As previously mentioned, IvM inverts the causal relations of movement production 
that would be done (i.e., inverse dynamics). In this process, IvM uses sensory information 
from the context and initial conditions (Figure 1-A) as inputs to transform the desired end-
state into motor commands.8,9 To explain the IvM involvements in movement control, it is 
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important to understand how the sensorimotor system may provide at least three motor 
steps on performing voluntary motor actions, also referred to as computations.15,19,23 For 
example, in the handball shooting previously presented, the first step is to define the 
appropriate kinematics of the desirable trajectory coordinates (e.g., the chosen shoot) 
according to the environment information.12,24 According to both the type of shot and spot 
chosen, the second motor step is the transformation to the trajectory in actual limb 
coordinates.23,25 The third problem is determining to generate the motor command 
according to the specified dynamics (kinematics and kinetics). This third step is not yet 
explained clearly in how the sensorimotor system maintains the final movement stability 
and precision.24,26 On one hand, it is hard to explain how the nervous system deals with 
variability caused by the huge number of degrees of freedom (redundancy) available in the 
motor system.27  On the other hand, it has been demonstrated that the training of the IvM 
can reduce the variability but does not eliminate it.26,28 Notice that all the described 
dynamical transformations are in an inverse logic: 
 

 

The above illustrative equation shows that the output of motor command u is the 
result of the estimated motor command  and the desired action y*. That is why the neural 

mechanism responsible for carrying out this process is named an Inverse Model.  
These three transformations have been studied and expressed in physical terms, 

as illustrated in Figure 2. In this illustration, an individual throws a ball to one of two 
possible targets (a condition that reminds the shooting example used at the beginning of 
this session). The desired trajectory is specified as a function of spatial coordinates such 
as the distance of the targets I and II (Figure 2-A), which will require two different angles 
corresponding to the actual trajectories of the limbs a-b and b-c. Figure 2-B presents the 
computations the IvM performs and also demonstrates specific variables processed in 
each computation such as time (t), angular distance (Ø), angular velocity (ω), and 
acceleration (α) as the processed inverse kinematics (α∫∫(b-c)), and the mass of the ball 
and the arm (m), and gravity (g) as the inverse kinetics (τ∫∫(b-c)). Once these dynamics are 
computed, the model specifies the best arm configuration (trajectories of the limbs) and 
environment information to achieve the target, which will result in the motor command. 
Results indicate the influence of the context (e.g., target distances) on the velocity and 
acceleration profiles in throwing actions29 that correspond to the computations proposed to 
the IvM.12 

 

 
Figure 2. Three transformations expressed in physical terms. 
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The need for motor efficiency to match the desired action can impose different 

demands on the IvM. When the environment condition is unknown and the task demands 
time precision, the IvM works via open-loop control.30 This kind of control is important in 
ballistic motor actions, performed in less than 200ms, requiring accuracy (i.e., an 
intercepting moving target) because these actions cannot rely on the online feedback 
control. Once performed in unfamiliar situations and requiring precision from the control 
system, these tasks require a well-calibrated IvM31,32 since there is not enough time for 
corrections during the movement.33,34 

In an environment with constant conditions and without time precision demand, the 
IvM could be controlled using sensory feedback to start or correct an ongoing action. In 
this case, an IvM can use the feedback control before the movement onset when too well-
trained IvM (e.g., an expert) matched a signal in prediction and in desiring future 
output.21,35 Another possibility is when the forward model is accurate enough, and the 
internal loop is equivalent to its pair of IvM.15 In this case, the IvM acts as a controller in an 
open-loop feedforward because there is no feedback from the actual command.15,21 

Beyond the behavioral and physical evidence for IvM, there have also been 
reported neurophysiological results proving its existence, functioning in motor control and 
learning. Neural circuitries incorporate and combine visuospatial and proprioceptive 
information about physical aspects of the environment and the body (e.g., gravity). These 
processes result in Inverse Models.12,36,37 

Neural inputs specify the desired action by encoding acquired information and new 
contextual input. Also, the desired output can provide information sources and be used to 
train the IvM as well as the Models involved in the same network.38,39 The encoding and 
processing of this information depend on specific cortical areas and will contribute to the 
selection of the IvM.34,40,41 The basal ganglia (BG) and the motor cortex (MC) are pointed 
as the main areas involved in planning and executing the desired action.38,42 The BG is 
responsible for the cognitive aspects such as planning and modulating the MC, whereas 
the MC, particularly the primary motor cortex (area M1), is responsible for triggering 
feedforward motor commands.41,42 

Inverse models are only one part of a complex neural circuitry for controlling the 
movements. As presented in this text so far, aspects such as selecting an appropriate IvM, 
online feedback control, and the updating of IvM are phenomena beyond the functions of 
the inverse models themselves and depend upon other control mechanisms. The next 
session will present the forward model, which works pairwise with the IvM, and contributes 
distinctively to the control and learning of motor actions. 
 

FORWARD MODEL 
 

Let us still look at the team handball player shooting to the goal. The player jumps 
at the edge of the area and notices that the left low corner will be the right place to shoot. 
He does as he planned and shoots a fast ball exactly to that spot, impossible for the 
goalkeeper to intercept it. How did he do that? Consider the size of the ball and the 
specific area available to shoot. Still, consider the high speed of the movement and the 
small amount of time available during the flight to execute the action. How did the player 
accomplish this task so precisely and fast? Moreover, the goalkeeper might change 
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position at any time. How did the player flexibly adapt to that specific demand? 
One possibility is that he had used a well-calibrated IvM to trigger a feedforward 

command that would activate the right effectors exactly as demanded. However, the IvM 
does not receive afferent input. So then, even if it were well-calibrated, it is very likely that 
the motor command would not exactly correspond to the task’s demands but would only 
approximate them. Moreover, even though sensory feedback was available to allow for 
online adjustments in the motor command, it is slow and noisy,43 which would not elicit fast, 
precise and flexible performances. Despite these difficulties, one can easily observe that 
actions as accurate as this are commonly performed in sports44 and daily life, for example, 
when we pick up a falling object. The Internal Models can explain.  

Behavioral45 and neurophysiological findings46 suggest the existence of a 
predictive neural mechanism named Forward Model (FM), which uses afferent and efferent 
input to predict movement outcomes (Figure 1-B) and enables the action to precisely occur 
regardless of the feedforward and sensory feedback limitations. The proposition of an FM 
comes from the middle 19th century by Hermann von Helmholtz.47 They observed that 
when the human eye is passively moved, it causes the impression that the environment is 
moving instead of the eye. This differs completely from the impression caused by an active 
movement of the eye, which indicates the eye is moving. To explain this recognition of a 
self-movement when a movement is actively produced, von Helmholtz proposed that when 
the sensorimotor system triggers a motor command to move the eyes, some region of the 
central nervous system (CNS) receives and processes a copy of this command (efferent 
copy). This copy allows for the prediction of the consequences of the ocular movements. 
According to the predictions, the resulting sensations are recognized as self-movements, 
and the remaining sensations are attributed to displacements of the surroundings. Such 
thinking about the use of efferent copies was further developed by Erich von Holst and 
Horst Mittelstaedt48 and by Roger Sperry49. At this point, the idea of predicting the effects 
of the motor command using an efferent copy was already clear, and the matter becomes 
not only to distinguish whether the movement is self or not but to understand the process 
underlying movement predictions and production. In other words, movements present 
magnitudes such as amount, duration, and intensity, which requires the sensorimotor 
system to extract (or simulate) all these magnitudes and provide all the predictions 
according to them. 

Although ocular movements are very simple, it is easy to perceive the 
computational complexity involved in their production. Such complexity becomes even 
larger in movements produced by body segments due to the number of degrees of 
freedom27 available and the possibilities of interactions with the environment. Accordingly, 
the FM is part of a robust and specialized predictive mechanism that simulates the 
dynamic behaviors of our body and the environment and elicits the production of efficient, 
accurate, and flexible actions. 

 
Functioning and roles of the FM 
  Both Internal Models, Inverse and Forward, are predictive mechanisms. However, 
their predictive functions are different and complementary. The FM analyses the efferent 
copy of the motor command produced by the IvM and predicts its effects as illustrated in 
the red circuitry in Figure 1. That is the reason for the name “Forward” (to the front, to the 
future): its function corresponds to a causal relationship in which a motor command 
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(efferent copy) produces an effect (predicted action). 
Besides the efferent copy, the FM receives afferent input from the sensory organs 

(e.g., muscle spindles, eyes), which signals the movement’s initial condition and the body 
and environmental changes during the movement (sensory feedback). These afferent 
signals allow the FM to estimate motor consequences according to the body and 
environmental conditions.10,50 

Because efferent and afferent inputs differ in nature (e.g., signals for muscle 
contraction vs. signals about joint coordinates), they cannot be directly compared. So then, 
the predictive role of the FM begins by translating the information of the efferent copy into 
a predicted action. When this translation occurs, the information of the efferent copy is 
transformed into predicted sensory consequences and becomes compatible with the 
actual sensory consequences (blue circuitry in Figure 1). This process is fundamental to 
the functioning of the FM and allows it to accomplish three particular roles: to analyze and 
make predictions about one’s own body (a state estimator); to analyze and make 
predictions about the environment (a context estimator); to play a central role in motor 
learning by updating the IvM (a remote teacher). These roles are detailed below. 

 
State estimator 

Let us return to the team handball player. He performs exactly as he planned and 
gives the goalkeeper no chance to intercept the ball. How did he attain such a quality of 
action? Even if one simplifies the analysis and considers only the movement of the 
throwing arm, the IvM might not be appropriately calibrated to send the required motor 
command.51 Besides, online corrections via sensory feedback might not be possible or 
even functional.43,52 These limitations make it difficult, if not impossible, to know the actual 
state of the body at a given moment (e.g., position in space, joint position, speed of body 
segments), but this information is still necessary to properly perform a motor action. The 
FM supplies this need by estimating the state of the body when it integrates the efferent 
copy and the sensory input. That is, it projects the condition of the body in the future, which 
compensates for delays and reduces the uncertainty (fluctuations) that arises from noise 
intrinsic to the sensory and motor signals47,53,54 and enables the performance of accurate 
and fast actions according to the demands. 

One of the tasks of the FM while acting as a state estimator is to correct the motor 
command before it reaches the effector (i.e., the muscles) – also referred to as motor plant 
– employing an internal feedback circuitry/loop simulated in the brain51 as illustrated in 
Figure 1-B and 1-C. Because the FM receives sensory inputs, it is constantly 
updated/calibrated and can precisely estimate a future state. Thus, when it receives an 
efferent copy, it may predict whether the effects of the motor command (i.e., the motor 
action) are the expected ones. If there is any discrepancy between the predicted effects of 
the efference copy and the desired action, the FM sends a corrective signal to the motor 
command. Because this circuitry is within the brain,46 it takes no more than 30 ms to 
update the motor command.55 Thus, this internal feedback loop explains the performance 
of fast and accurate motor actions even though the sensory inputs are slow and noisy 
(Figure 3-A and 3-B). 

While the movements of the arms are central to performing a handball shot, the 
body works as a whole. Thus, there is a need for many body adjustments and segmental 
integration. Take as an example the control of the ball grip. When the arm begins the 
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throwing swing, some forces are impressed into the ball. Due to its inertia, the ball tends to 
slip off the hands. Thus, it requires grip adjustments according to the swing velocity; 
otherwise, the ball will escape the hand when the arm accelerates. When the ball’s inertia 
is overcome, the increased grip force is no longer required, then it will reduce again. These 
refined adjustments in grip force require a sophisticated and harmonious arm-hand 
integration. 

One possibility to explain these adjustments is tactile feedback (the ball slipping off 
the hand). However, grip force adjustments occur simultaneously to the corresponding 
changes in the arm swing, or even slightly before these changes,56,57 which rules out the 
use of sensory feedback and consequently of online control. Another possibility is the use 
of a single feedforward motor command to the arm and hand. However, experimental 
results show that the coupling between arm force and grip force is learned before the arm 
swing,56,57 indicating that the arms and the hands receive different motor commands. An 
elegant solution to this issue considers the state estimator role of the FM.56-63 The FM 
receives sensory inputs related to the kinetics of the ball (e.g., its weight). Then, when the 
FM receives the copy of the motor command and estimates its effects on the body (e.g., 
acceleration), it can also estimate the future state of the ball in the hands and inform the 
exact prehension time and force required57,64 (Figure 1-C). Such a coupling role also 
integrates the movement of other segments of the body. Some findings show this same 
anticipatory/predictive behavior for eye movements65,66 and for movements of the trunk 
and the legs,54,67-69 which allows for motor adjustments as a function of other movements 
such as in throwing or reaching. These findings strongly indicate that the state estimator 
role of the FM is the centerpiece for the harmonious integration of the segments of the 
body during motor actions. Neurophysiological research has also supported this coupling 
function of the FM and points to the cerebellum as one of the sites for “allocating” Forward 
Models.54,63,70 

Because the state estimator predicts the afferent inputs that will result from the 
motor command, it can also confirm and cancel the predicted inputs. Such a function is 
important for two reasons. First, it aligns with the use of the efferent copy to recognize self-
motion.48,49 In this case, the FM allows for the distinction between the effects of the motor 
commands and the effects from other sources. Second, confirmation and cancelation of 
sensory inputs also allow for distinguishing between more or less important signals. For 
example, a well-documented phenomenon is an inefficiency to tickle ourselves.71 
Blakemore et al.72-75 investigated the tickling effects of different stimuli, which 
corresponded to self and external stimulation. Even when self-stimulation causes tickling, 
its magnitude is far lower than when tickling arises from an external agent (e.g., somebody 
else). Because sensory inputs related to the motor commands were already predicted, 
they are attenuated (confirmed and canceled out). Such an attenuation permits non-
predicted (newer) signals, mostly related to environmental agents, to be emphasized. 
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Figure 3. Internal feedback loop. 
 
Context estimator 

Besides estimating the states of the body during a motor action, the FM also 
estimates the environmental/contextual consequences of the motor commands.10,47,55 
Such an estimation becomes evident when we consider that a person performs accurately 
and properly in a variety of contextual conditions, even in unpredictable ones.  

The performance of a motor action will always depend on context estimations 
based on the combination of two different types of sensory inputs: signals previous to the 
action and the sensory feedback provided during or after the action.10,76 For example, 
consider a situation in which a person holds and lifts a carton of milk. This person may 
access the dimensions and the material of the carton but not the amount of milk. Thus, it is 
highly probable that the motor commands will not fit the condition properly because the 
cues indicating the weight of the carton are missing. Suppose that the person considered 
that the carton was full, and when the movement began, the carton lifted too fast because 
it was only a quarter full. In this case, the motor command would need an update based on 
estimations that would require the sensory feedback available after the action had begun. 
Consider also that another person would use this same carton and saw that first one 
pouring milk out of it. In this condition, having seen somebody else manipulate the carton 
would have fed the FM with cues that would allow estimating the amount of force required 
to act more precisely and correct the motor command before it had reached the muscles 
by using the internal feedback loop. 

Some theoretical proposals suggest that these motor adjustments occur due to the 
existence of multiple Forward and Inverse Models within the CNS that work 
interconnectedly and modularly and correspond to specific body segments and 
tools.10,16,17,46 This modularity allows flexible motor actions because the sensorimotor 
system switches the modules on and off and also combines them to accommodate the 
environmental demands. In addition, behavioral77,78 and neural findings46,53,79,80 support 
modularity, although it has not been demonstrated how the CNS combines and switches 
the combination of the modules.10,76  

 
Remote teacher 
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Motor actions occur in many different and varied contexts. For example, tools, 
equipment, and clothes present different types and characteristics (e.g., shape and 
weight); even our bodies change over time. Such variability requires both IvM and FM 
models to change accordingly, which the sensorimotor system provides by updating 
preexisting models and building new ones in a learning process.16 

The Internal Models are constantly updated, but the FM is central to the learning 
process because it is directly updated and indirectly updates the IvM in an error-based 
learning process45,51 represented in the circuitry in Figure 1-B. As presented earlier, the 
motor command from the IvM and the sensory input cannot be directly compared. Thus, 
the IvM cannot be directly updated. However, the FM can because it translates the 
information of the motor command into predicted sensory consequences or an estimate of 
the sensory feedback. Comparisons between the predicted sensory feedback and the 
actual sensory feedback are responsible for updating the FM and refining its predictive 
function. Furthermore, because the FM receives the copy of the motor command, it can 
also translate the sensory feedback into motor coordinates and indirectly update the IvM 
as indicated by the dotted arrow in Figure 1-D. This function of updating the IvM is referred 
to as “distal teacher”. 

Some behavioral investigations indicate that the FM is formed previously to the 
IvM,56,81 and some neural circuitry supports the functions of the FM and also its 
calibration.5,46,63 The Cerebro-cerebellum, the two lateral regions of the cerebellar 
hemisphere that communicate to the cerebral cortex, is a region for “allocating” Forward 
Models46 because of its characteristics and functioning as follows. The mossy fibers in the 
cerebellum communicate directly to the motor cortex (area M1). They activate about 10 ms 
after the motor cortex triggers the motor command and the modulation of its activities 
precede the movement in about 80 ms, which resembles the internal feedback loop of the 
FM. The cerebellum also receives and is highly sensitive to muscle and cutaneous sensory 
input, which allows it to monitor the actual state of the motor system with short time delays 
(about 6 ms). The granule cells (GC) of the cerebellum receive efferent and afferent input, 
making them very likely to integrate information. Additionally, considering that the large 
number of GC allows a wide combination of efferent and afferent signals, and the 
combination of these signals is the functional base of the FM, it can explain the movement 
control and the acquisition of new Forward models by new synaptic formation. Moreover, 
anatomical and physiological data indicate that the neural circuitry in the cerebellum is 
modularly organized and that each module corresponds to small body parts (e.g., parts of 
the arm), which reinforces that the cerebellum is very likely a region for “allocating” FM.  

 

CONCLUDING REMARKS 
 
This paper presented an overview of the theoretical proposals of Internal Models 

for motor control. These proposals provide robust evidence-based explanations for the 
production, learning, and adaptation of motor skills. Mainly, it considers that our sensory 
inputs present serious limitations, which hinder the possibility of controlling the body and 
directly interacting with the environment. Thus, the Internal Models approach proposes that 
the CNS simulates (models) the reality so that the organism can move and interact with 
the environment based on predictions and estimations. The basic elements for these 
predictions are the Inverse and the Forward Models, which produce a series of 
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computations (expressed in math and physical terms), and play very specific roles. Here 
we summarized and generalized the functioning and roles of the Inverse and Forward 
Models. We notice, however, that the way these mechanisms are considered differs 
according to particular approaches in Internal Models, such as the Direct Inverse Modeling, 
the Feedback Error Learning, and the Supervised Learning approach considered at the 
beginning of this paper. 

Moreover, other mechanisms of control, not in the scope of this overview, seem to 
participate in the circuitry of motor production, indicating that the Internal Models theory, 
although consistent, is still a growing field and a place for debate. Nevertheless, 
undoubtedly, these theories already provide important and robust contributions to the 
understanding of motor behavior. 
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