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ABSTRACT 

Motor learning is a central focus of several disciplines including kinesiology, neuroscience and rehabilitation. 
However, given the different traditions of these fields, this interdisciplinarity can be a challenge when trying to 
interpret evidence and claims from motor learning experiments. To address this issue, we offer a set of ten 
guidelines for designing motor learning experiments starting from task selection to data analysis, primarily from 
the viewpoint of running lab-based experiments. The guidelines are not intended to serve as rigid rules, but 
instead to raise awareness about key issues in motor learning. We believe that addressing these issues can 
increase the robustness of work in the field and its relevance to the real-world. 
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INTRODUCTION 

Motor learning is a central focus of several disciplines including psychology, 
kinesiology, neurophysiology, neuroscience, rehabilitation, and engineering. While this 
diversity of perspectives is a positive feature in terms of the development of new ideas and 
theories, it also brings associated challenges in terms of interpreting evidence and claims 
about motor learning. In our experience leading journal clubs, it is not uncommon to 
discuss a paper with a claim about “motor learning” in the title and end up questioning if 
the paper was really even about motor learning! A large part of this challenge is due to the 
fact that theoretical, conceptual, and methodological issues related to the design of motor 
learning experiments that are ‘common knowledge’ to researchers in one particular 
discipline may not always be accessible to researchers from other disciplines. 

To address this issue, we provide a set of ten guidelines to raise awareness about 
these issues and navigate the design and analysis of motor learning experiments (Table 
1). For each of these decision steps, we discuss common pitfalls and suggest 
recommendations, citing examples from both classic and recent studies of motor learning. 
Although several of these factors have been emphasized in prior work 1–5, the goal of this 
article is to synthesize this tacit knowledge to provide a step-by-step guide through the 
entire process from task selection to data analysis and interpretation. The paper is 
primarily intended for early-career researchers who are new to the field, but we hope that 
the issues raised can also serve as a starting point for discussions during interdisciplinary 
collaborations. 
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Table 1. Summary of the ten guidelines for motor learning studies. Each step in the process is listed with associated pitfalls 
and recommendations. 

 

 



BJMB         
Brazilian Journal of Motor Behavior 
 

Ranganathan, 
Lee, Krishnan 

2022 VOL.16 N.2 https://doi.org/10.20338/bjmb.v16i2.283 

 

 

 

Special issue: 
The role of practice in motor learning 

114 of 133 

STEP 0: DEFINING WHAT MOTOR LEARNING IS 
 
One of the main barriers in motor learning research is that there is no universally 

accepted definition of motor learning across all disciplines and contexts 6,7. Even at the 
behavioral level, definitions of learning have focused on several aspects including 
improvements in outcome, consistency, stability, persistence, adaptability, and 
automaticity 8. Other definitions of motor learning have emphasized adaptation and 
reorganization of existing skills 9, changes in coordination dynamics 10, speed-accuracy 
tradeoffs 11, information pick up 12 and even decision making 13. While there are certainly 
common characteristics across many definitions that fall under the classic view of learning 
as a “relatively permanent change in behavior” 4, it is important to note that the specific 
definition of motor learning adopted can have a major influence on many of the guidelines 
suggested here. For example, the question of how to measure learning can depend on 
whether learning is viewed as an improvement in the practiced skill (where learning would 
be characterized by a retention test with the same task goal and same practice conditions), 
an improvement in the adaptability or flexibility 14 (where learning would be characterized in 
terms of achieving the same task goal under different conditions), a general change in the 
movement capability (where learning would be characterized by a transfer test to examine 
the generality to other task goals that were not practiced), or a change in the underlying 
movement repertoire  (where learning would be characterized by a ‘scanning’ paradigm 
examining the stability of different coordination patterns 15). In this paper, we focus on 
general guidelines that we believe apply to many motor learning contexts, but these 
guidelines always have to be considered within the context of how motor learning is 
defined in that specific context. 

 
STEP 1: TASK SELECTION 

 
The task has a critical role in motor learning and is perhaps the biggest source of 

interdisciplinary differences. Given the criticism of ‘applied research’ for resulting in 
“disconnected pockets of data” that are unsuitable for the development of general scientific 
principles 16, the goal in lab-based settings has been to use somewhat artificial tasks to 
isolate specific aspects of motor learning (e.g., sequence learning, reducing variability). 
Therefore, choosing a task in lab settings needs to address two issues: (i) provide the 
feasibility to do experiments (e.g., tasks that can be learned in relatively short periods of 
time) and (ii) provide insight that is generalizable to real-world tasks. 
 
Pitfalls 

The use of ‘simple’ motor tasks can threaten generalizability to ‘real-world’ motor 
learning 1,5. While it is not trivial to define apriori objective criteria on what makes a task 
simple, they can be roughly characterized as: (i) tasks where learning primarily involves 
figuring out the task goal and/or using existing movement capabilities to solve the task 
(rather than requiring a true change in the movement capability), and (ii) tasks with a lack 
of ‘intrinsic information’, which makes it difficult for a learner to judge their performance on 
their own, without feedback from the experimenter 17,18. While it is likely difficult to identify 
these characteristics directly, they can be examined in the data, in which learning of such 
simple tasks is likely to be reflected as: (i) a sudden and very rapid improvement in 
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performance over a few trials of practice 5 with very little subsequent improvement 
(indicating that participants ‘figured out’ what the task goal was with no change required in 
movement capability), and (ii) a dramatic drop-off in performance when conditions are 
slightly changed (e.g., when performing the task after a delay or when withholding 
augmented feedback). For example, early work examining the role of knowledge of results 
has been criticized for using such tasks (e.g., draw a line of length 50 cm) where the 
learner does not have sufficient intrinsic sources of information, and therefore, has to rely 
on augmented feedback to even understand what the task goal is 18. 

 

Recommendations 
Explicitly define what the “learning” in the task entails. In view of improving 

our understanding of how studies from an experimental paradigm relate to others 
(including real-world learning), it is critical to answer two questions: (i) what is the problem 
that the learner has to solve to achieve good performance in the task, (ii) how much of this 
problem is known to the learner prior to learning (versus being discoverable only through 
practice)? For example, while most studies provide a ‘score’ that participants have to 
maximize or minimize, there may be important differences in how much participants ‘know’ 
about the task. In some cases, participants may know exactly how they need to improve 
this score (e.g., landing the ball closer to the target will result in higher scores). On the 
other hand, in typical reinforcement learning paradigms, the learner has no explicit 
knowledge of what results in higher scores and has to discover this relation through trial-
and-error exploration. Making these types of distinctions explicit in the task description 
may be a critical step in separating out different types of learning studies, which potentially 
can lead to a better understanding of how findings from particular experimental paradigms 
generalize to other contexts. 

Balance ‘realism’ and ‘insight’. Given the inherent tradeoff between ecological 
validity and experimental control, it might be useful to consider tasks that resemble real-
world contexts while also providing sufficient richness of measurement beyond just the 
task outcome 19. For example, Haar and colleagues 20 devised a real-world pool task that 
measured the outcome (e.g., directional error), but also allowed for accurate measurement 
of whole-body kinematics and EEG. This is not to imply that ‘more variables are better’, but 
that well-justified dependent variables that go beyond the task outcome can provide insight 
into learning (also see Step 8). In addition, using tasks that allow for ‘multiple pathways’ to 
learn the task also allows insights into “how” learning occurred. For example, Sternad and 
colleagues devised a throwing task 21,22 where the main goal for participants is to reduce 
the variability of the task outcome, but the task was designed in a way that this 
improvement in variability could be achieved in multiple ways - decreasing noise, moving 
to more error-tolerant workspaces, or covarying movement parameters. The advantage of 
such tasks is that one can go beyond typical task outcome measures (where learning is 
almost certainly bound to have an effect) and look at the effects of learning at other levels 
of analysis (where the results may be more informative because it may not be easy to 
predict what the effects of learning may be) and the associated search strategies in the 
perceptual-motor workspace 23,24. 

 
STEP 2: INSTRUCTIONS AND FEEDBACK 

Once the task is defined, the next step is to decide on the instructions to the 
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participant and the associated feedback that is given to the participant. As mentioned in 
Step 1, one of the important aspects of the instruction is how they define the task goal for 
the participants. In addition to instructions, participants also typically receive some 
feedback during the task (usually provided using a score).  In our view, while there has 
been an extensive body of literature on the effects of instructions or feedback – for e.g., 
manipulating attentional focus 25, given the powerful ways that instructions and feedback 
can channel learning, they should be considered carefully even in tasks where they are not 
the primary experimental manipulation. 

 
Pitfalls 

First, in the absence of clear unambiguous instructions, the learning problem may 
be “ill-defined” as participants may perceive the task goal differently from the way the 
experimenter intends it. For example, an instruction to “move as quickly as possible” could 
be interpreted as minimizing reaction time, minimizing movement time or minimizing the 
total response time. 

 Second, instructions or feedback may qualitatively change the strategy adopted to 
solve the task, especially when there are multiple, competing demands (e.g., “as fast and 
accurate as possible”). For example, in a speed-accuracy tradeoff experiment, even when 
other experimental parameters were closely matched, performance strategies under “time 
minimization” instructions (i.e., reaching to a target as quickly as possible) were 
qualitatively different from performance under temporal accuracy constraints (i.e., reaching 
a target as accurately as possible in a specified time) 26. Similarly, feedback can also act to 
serve as a task constraint. For example, allowing for greater ‘tolerance’ in temporal 
precision changed the nature of the speed-accuracy function 27. Given the recent emphasis 
on measuring speed-accuracy tradeoff functions as a measure of skill 11, these examples 
highlight the critical role of instructions and feedback in motor learning experiments. 

 
Recommendations 

Provide clear instructions. Clear instructions reduce uncertainty about the task 
goal and reduce between-subject variation in interpreting the tasks (which in turn reduces 
the need to eliminate ‘outliers’). Adding a ‘familiarization’ block at the start of the 
experiment can also help provide a quick real-time check as to whether participants indeed 
understood the instructions. 

 Provide feedback consistent with the instructions. The feedback to 
participants should closely align with the instructions. This not only ensures that 
participants understand their performance but as seen later in point 8, this also allows for 
clearly defining dependent variables that can be used to track participants’ compliance to 
the instructions. For example, in a steering task 28, the task instructions were to move a 
cursor from the start to finish as fast as possible, while staying within the boundaries of a 
channel. The feedback, therefore, involved a score that involved two terms - one that 
penalized the overall time and one that penalized the time outside the channel. By varying 
the weights of individual terms in an integrated score, it is possible to channel participants 
toward different strategies 29. 

In addition to its informational role, feedback also has a motivational role 4 - so it 
may also be helpful to think of ways to keep participants engaged in the task over long 
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periods of time- e.g., using visual or sound effects to indicate good and bad performance 4, 
or providing a summary score at the end of a block of trials. 

 
STEP 3: PRACTICE DURATION 

Given the focus on ‘simple’ tasks, a large majority of motor learning studies tend to 
rely on a single session of practice, with possibly the addition of a 24-h retention test 4. 
However, justifications for such practice durations are rarely specified explicitly. It is 
perhaps not surprising then that in addition to the type of tasks studied, these extremely 
short practice durations are another key barrier in translating findings from motor learning 
experiments to real-world learning or rehabilitation. 

 
Pitfalls 

First, from a theoretical standpoint, when the duration of practice is not clearly 
justified, it becomes unclear what process is being studied. Several theories have 
proposed that learning occurs in stages, with more ‘cognitive’ processes being engaged 
early on, followed by more automatic performance later in learning 16,30. Second, from a 
measurement standpoint, the duration of practice impacts the reliability and sensitivity of 
the dependent variable. When practice durations are short, both within- 31 and between-
subject 32 variability tends to be high, making measurements less reliable (although these 
factors depend to a large degree on the task and the stage of learning 33). When practice 
durations are long, performance can reach a plateau, making the dependent variable less 
sensitive to detecting changes between different groups. 

 
Recommendations 

Characterize a full learning curve for the task. Rather than rely on preliminary 
pilot data, we suggest that initial experiments with a new paradigm involve learning with a 
relatively extended period of time so that the full learning curve can be characterized. The 
actual duration of this period will depend on the task, with the goal of trying to estimate 
when the performance reaches a relative plateau. For example, Reis et al. 11 examined the 
effect of brain stimulation on a speed accuracy task over 5 days, with retention periods up 
to 3 months. This type of initial characterization of tasks has three advantages - (i) it allows 
subsequent studies to potentially run shorter experiments depending on the research 
question, (ii) it can be helpful in determining if ‘non-significant difference’ between groups 
are due to performance plateaus, and (iii) it also allows for a more natural interpretation of 
effect sizes in terms of ‘practice time saved’. For example, Day et al. 34 determined that 
abbreviated exposures to split-belt walking had the same effect as 4 days of practice at the 
task. This type of ‘natural effect size’ may be more intuitive in conveying the magnitude of 
effects for motor learning studies than relying on default standardized effect sizes like 
Cohen’s d 35,36. 

 
STEP 4: GROUPS 

Most motor learning experiments that attempt to examine the effect of training 
paradigms rely on ‘between-group’ manipulations since it is reasonable to assume that 
motor learning cannot be ‘washed out'. In this regard, motor learning studies have relied 
heavily on ‘two group’ comparisons - e.g., studies on variable practice typically have a 
‘constant’ group and a ‘variable group’ 37. However, defining these experimental groups is 
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critical in determining the insights that can be gained. 
 

Pitfalls 
The main pitfall of ‘two-group’ studies is that most manipulations involve a 

continuous variable that has non-monotonic effects on learning - i.e., there is an optimal 
parameter value or challenge point 38 at which learning effects are maximal, and the 
learning effects decrease on either side of this optimal value. Therefore, construction of 
two groups based on parameter values (e.g., selecting a low variability and high variability 
group) can yield different results depending on where the parameter values of these 
groups lie relative to the optimal value 2. Second, even in cases where the groups are 
based on a variable that is categorical, two-group studies typically tend to be designed in a 
way to ‘exaggerate’ differences between groups 39, which can create misleading effect 
sizes and limit generalizability and real-world relevance. 

 
Recommendations 

Characterize ‘dose-response curves’ across multiple parameter values. Initial 
studies should characterize the dose-response across a reasonable range of parameter 
values to detect the presence of any optimal values.  For example, an early study on the 
effect of distributed practice used five groups with inter-trial intervals ranging from 0 to 60 
seconds and found no non-monotonic relation on performance or retention 40. On the other 
hand, a study on summary feedback used multiple groups and found a non-monotonic 
change - i.e., both too frequent and too infrequent feedback had similar effects on learning 

41. While the actual research question is always critical in deciding how many groups are 
required, this type of extensive initial characterization with groups can help justify the 
choice of the number of groups (and the specific parameter values chosen for these 
groups) for subsequent studies using the same tasks. 

  Add realistic control groups. Even when a variable is clearly categorical, 
adding of ‘realistic’ control groups that represent reasonable choices for learning the task 
can provide greater clarity on the effect. A recent review characterizes in detail the 
different types of control groups that can be used in motor learning research 42. One 
particularly important factor that adds a realistic control group in the context of motor 
learning is ‘practice specificity’ - i.e., when practice conditions match the test conditions 

43,44. For example, when examining the effects of variability on learning and consolidation, 
Wymbs et al. 45 used a number of control groups (including adding a ‘practice specificity’ 
group where no variability was added) to fully tease out the effect of adding variability. 
These types of data are not only useful for future studies, but also change the focus of 
motor learning studies from “whether” a particular type of practice matters to motor 
learning (which is almost always a “yes” in our view based on the idea that the ‘nil’ 
hypothesis of any intervention having zero effect is almost never true 46) to “how much” it 
matters (which is much more informative). 

 

STEP 5: SAMPLE SIZE 
Sample size is one of the most important factors in experimental design. Most 

motor learning experiments tend to be small (typical sample sizes of 10-16/group) 2,47 likely 
indicating that this has become a heuristic determination rather than a justified 
determination. A difficulty with performing typical justifications with apriori power analysis is 
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that tasks tend to vary between studies 2, making it difficult to extract effect sizes from prior 
work. 

 
Pitfalls 

The pitfalls of low sample sizes have been extensively covered in other literature 

48,49 - so we just highlight two main points: (i) low sample sizes have low power, which can 
lead to missing true effects, and (ii) a literature with low powered studies means that 
published effects will tend to have inflated effect sizes 48. 

 
Recommendations 

Justify sample size. Sample size justification statements are critical for judging 
the informational value of a study. Other than apriori power analysis, these can include 
other types of justifications such as accuracy or resource constraints 50. McKay et al. 51 
provide an example of sample size justification where the sample size was based on a 
prior study, with adjustments to the p-value for sequential analysis. In light of steps 3 and 4 
that raise the need for initial characterization of long-term studies with multiple groups, it is 
critical that these studies also have sufficient sample sizes for reliable estimation of effect 
sizes. 

 

STEP 6: MANIPULATION CHECKS 
Manipulation checks refer to tests that examine if the designed intervention had 

the desired effect on the participant. While certain types of interventions do not require 
such checks since they are directly under the control of the experimenter (e.g., the inter-
trial interval), other variables are designed to elicit specific responses during practice (for 
e.g., increasing motor variability using force perturbations).  Often, with the emphasis that 
practice during training may not be reflective of ‘true’ learning (i.e., the learning- 
performance distinction) 52, there is sometimes a tendency in motor learning studies to only 
focus on the end-result without interpreting if an intervention had the desired effect ‘during’ 
practice. 

 
Pitfalls 

Without a manipulation check, interpretations of results can be ambiguous. For 
example, a study on contextual interference (typically manipulated using a blocked vs. 
random schedule) needs a manipulation check that the random schedule indeed created 
more interference during practice. This manipulation check is usually done by examining if 
there were higher errors during practice for the random group. Without this check, it is 
difficult to disambiguate a true ‘null result’ (i.e., contextual interference did not have a 
significant influence on learning) from a ‘failed manipulation’ (i.e., the experimenter’s 
attempt at introducing contextual interference was not successful). 

 
Recommendations 

Provide manipulation checks. Manipulation checks can vary depending on the 
type of study. In some cases, manipulation checks can be done using variables that are 
already directly recorded during data collection. For example, Cardis et al. 53 showed 
perturbations of the null and task space increased variability in these dimensions.  In other 
cases, there may be the need for separate manipulation checks - e.g., Grand et al. 54 used 
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both the intrinsic motivation inventory and electroencephalography to examine if the 
manipulation resulted in increased motivation. When manipulation checks ‘fail’, it might be 
critical to consider all aspects of experimental design mentioned in Steps 1-5 (the 
instructions to the participant, the amount of practice, etc.) as well as the measurement 
resolution of the variable being used for the manipulation check. However, one caveat 
when introducing these manipulation checks is to also minimize the possibility that the 
manipulation checks themselves change the behavior of the participant 55. 

 

STEP 7: TESTS OF LEARNING 
Perhaps one of the most important insights in motor learning is the ‘learning-

performance’ distinction - i.e., that changes in performance during practice are not always 
indicative of learning 3,52. This insight has resulted in the use of separate ‘tests’ of learning- 
e.g., delayed retention tests or transfer tests as conditions for measuring ‘true’ learning. 
This raises a critical question as to what test is most applicable for measuring learning. 

 
Pitfalls 

First, there has been an overreliance on the “24h No-KR test” as the ‘only’ 
acceptable condition for measuring learning 17. While the 24h No-KR condition can be a 
good indicator of learning in some cases, both the “24h” and the “No-KR” portions of the 
test can sometimes be problematic. First, the 24h period is intended for dissipating 
temporary effects, but whether this makes it a ‘true’ test of learning may depend to a large 
degree on the task and the timescale of learning involved. For example, rehabilitation 
paradigms that attempt to change movement capacity over several weeks typically involve 
follow-up tests in timescales of weeks or months. Second, the No-KR part of the test is 
intended to provide a ‘stable’ performance by minimizing possibilities for learning “during” 
the test. However, in many cases, because information about performance is available 
naturally through sensory information outside of “augmented feedback” provided by the 
experimenter, trying to prevent learning during the test has led to artificial measures such 
as ‘blindfolding’ the individual and/or using headphones playing white noise. In such cases, 
the dramatic change in feedback information may induce the learner to adopt qualitatively 
different strategies during the test, which are unrelated to the original learning. 

Second, these tests of learning are typically designed to measure only a 
‘snapshot’ of the process (usually as short as 10 trials). This means that the snapshot itself 
can be unrepresentative of true learning because it can include temporary effects such as 
warm-up decrement, especially when administered after a time delay, or when there is a 
sudden change in the context 17. 

 
Recommendations 

Justify test conditions. We recommend that the test conditions are aligned with 
the definition of what the learning in the task involves (mentioned in Step 1) and what 
aspects of information are considered ‘part of the task’. For example, Lokesh and 
Ranganathan 28 used a haptic feedback study where the test involved removal of haptic 
feedback, but retained concurrent visual information of the cursor because this visual 
information was considered part of the task. Similarly, the timeline of such a test can be 
aligned with respect to the total learning time and other task factors such as fatigue. For 
example, a 24 h retention test may be justifiable for tasks with a one-day practice duration, 
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but longer timescales of learning may potentially require longer time intervals. For 
example, in a balancing task that was practiced over 6 weeks, the retention test was made 
3 months after the last practice block 56. 

Make tests more than a single ‘snapshot’. Including a retention test with a 
relatively large number of trials can provide the ability to separate out temporary and 
relatively permanent effects. For example, studies of massed and distributed practice show 
that while there are effects in the first few trials of the next day, these differences are 
quickly eliminated within the next few trials of practice 57. A further alternative is to consider 
a series of retention periods - for example, Reis et al. 11 measured retention at 5 time 
points from 3 days until approximately 3 months after the last practice. This type of data 
could characterize retention over time, which is critical for studies that examine learning in 
the context of a change in the movement capability. In addition to testing over time, 
transfer tests 1,58,59, which involve testing in conditions that were not originally practiced, 
can also provide a richer description of learning. However, a critical piece in transfer tests 
is determining the appropriate transfer conditions so that it is clear how these transfer 
conditions relate to the originally practiced task. van Rossum 60 emphasizes the use of task 
analysis as a means of designing transfer tests so that the results from transfer tests can 
yield useful information about what was learned. For example, in sequential timing tasks, 
transfer tests with the same or different relative timing patterns as those during practice 
were used as a critical test to distinguish whether the benefits of variable practice were 
due to the formation of motor schemata or contextual interference effects 61,62. 

 

STEP 8: DEPENDENT VARIABLES 
Dependent variables in motor learning studies have to accomplish two main goals 

- (i) the variable sufficiently captures the improvement in task performance, and (ii) it 
provides ‘insight’ into how improvements are occurring. Part of the challenge in defining 
these variables is that motor performance is multidimensional and there is usually no 
unambiguous choice of variables. For example, in a golf putting task, the dependent 
variables used to measure learning could be (i) the percent of putts made, (ii) the number 
of points scored in a scheme defined based on the distance from the hole (e.g., 10 points 
for making the putt), (iii) the absolute error in terms of the distance from the target, or (iv) 
the variable error in terms of the consistency of the putts. In some cases, the dependent 
variable may even be derived ‘post hoc’ at the data analysis stage - for e.g., the number of 
putts that were within 1 inch of the hole, or a score that weights the absolute error in the 
putting task by the time taken to prepare for the putt. 

 
Pitfalls 

First, the choice between several dependent variables (especially when they are 
derived post hoc) can inflate researcher degrees of freedom 63. For example, in the golf 
putting task described above, the choice between many possible dependent variables can 
result in a situation where some variables show statistically significant differences but 
others do not. If undisclosed, such flexibility in the choice of dependent variables can lead 
to a large increase in the false positive rate 63. 

Second, some dependent variables do not have desirable characteristics either 
from a measurement standpoint or a mechanistic standpoint. For example, from a 
measurement standpoint, measures such as number of putts made can be insensitive to 
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changes in the magnitude of errors. In terms of mechanistic insight, some dependent 
variables may not provide sufficient information about the performance. For example, in 2D 
aiming tasks, using only a scoring system (or radial error) may mask important changes in 
terms of changes in bias or variability 64,65. 

 
Recommendations 

Check if the dependent variable shows conceptual alignment. From a 
conceptual standpoint, the dependent variable should closely align with the instructions 
and feedback to the participant.  As Newell 66 states “it seems unreasonable to evaluate 
the effect of an independent variable primarily through criteria different from that originally 
stressed to the subject” Moreover, alignment with instructions and feedback reduces 
researcher degrees of freedom by minimizing the potential for ‘post hoc’ derived 
dependent variables. For example, in a gait tracking task which involved the participants to 
match a target template with their foot, Krishnan et al. 67 define the error measure only in 
the spatial dimension using an area metric (as opposed to say using RMSE, which would 
need to involve assuming something about the temporal component that were not part of 
the instructions). In cases where the dependent variable may not be apparent immediately 
from the instructions and is a combination of multiple variables (say in a task that 
emphasizes both speed and accuracy), it might be ideal to pre-register this analysis so that 
there is transparency about flexibility in data analysis 63. 

Check if the dependent variable shows good measurement properties. From 
a statistical standpoint, dependent variables should be sensitive enough to track changes 
with learning. Although measures such as error rates or % success may be used in some 
contexts because they have functional significance (i.e., in a real game, “near-misses” do 
not count), in general they may be too coarse-grained to detect differences. While it is 
desirable to have these dependent variables in real-world units (e.g., error measured in 
cm), this may not always be feasible and may require other approaches. For example, 
studies on the free-throw use a point-based system (e.g., 5 points for a swish) to improve 
the sensitivity of the dependent variable 68. However, it is important to note that any system 
developed should also be considered on a conceptual basis - i.e., if participants get scored 
higher for a free throw that goes directly in the hoop compared to one that goes in after 
bouncing off the rim or the backboard, this information should also be communicated to the 
participant through instructions. 

Check if the dependent variable provides mechanistic insight. Finally, 
consider dependent variables that yield ‘insight’ into the underlying process of motor 
learning. In many cases, these may be considered ‘secondary’ variables that help 
delineate different processes. For example, the dependent variable in many aiming tasks 
is an absolute error (AE), but this measure is a combination of constant error (CE) and 
variable error (VE) 69. Therefore, while the AE can be the ‘primary’ dependent variable 
(based on conceptual grounds that it was the instruction to the participant) 66, breaking 
down the AE into secondary variables CE and VE can provide additional insight into ‘how’ 
participants got better. Similarly, Lee et al. 70 use movement time as the primary dependent 
variable in a cursor control task, but also measure the path length to examine if increased 
movement times are due to changes in movement speed (which would not change path 
length) or taking more circuitous paths (which would result in increased path length). 
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STEP 9: MEASURE OF LEARNING 
The measure of learning used in the analysis is extremely critical, as they form the 

basis for inferences drawn from the experiment. Similar to the debate about measuring 
learning in many other fields, there are two distinct philosophies for measuring motor 
learning - proficiency (i.e., how good is performance after practice) and growth (i.e., how 
much has performance changed after practice), and a multitude of measures have been 
used to quantify learning based on both approaches 71. Proficiency-based measures 
typically rely on the absolute performance level at the end of practice (e.g., on a retention 
test) to measure learning. On the other hand, growth-based measures typically use a pre-
post experimental design, where the change between initial and final performance levels 
are compared across groups. This change can be (i) a gain score (i.e., final performance - 
initial performance), (ii) a gain score that is ‘normalized’ in some way (e.g., final 
performance/initial performance *100) or (iii) a post-test score or gain score that uses the 
pre-test score as a covariate. In addition, the ‘rate’ of learning is often also computed as a 
way to capture if one group learns faster than the other. As in the case with the choice of 
dependent variable, the presence of multiple measures to assess learning can create a 
challenge, as it increases researcher degrees of freedom. 

 
Pitfalls 

First, the use of ‘pre-tests’ in motor learning has been criticized on two grounds 4 - 
(i) that pre-test scores in motor learning are unreliable because early trials at a task 
generally are extremely variable and show very poor correlation with final performance, 
and (ii) extending the trials in the pre-test to get a reliable measure of baseline 
performance essentially provides practice at the task, thereby minimizing the room for 
improvement during the actual intervention. 

Second, the use of gain scores has been criticized as a learning measure 72 
especially in cases where the pre-test scores are not the same across groups. For 
example, since the gain scores are skewed by the initial performance level, individuals with 
a lower pre-test scores could appear to have greater ‘gains’ even if their final performance 
was lower or similar to an individual with higher pre-test scores 71. This will especially be 
the case in situations where the performance approaches a plateau. While normalizing the 
gain score (e.g., expressed as a %) can offset some of these issues, this also has to be 
treated with caution since the normalization procedure makes assumptions about the form 
of the learning curve. 

The problem with a gain score is even more obvious when using a ‘relative 
retention’ measure (i.e., a difference score computed between the last block of practice 
and the retention test). In this case, the magnitude of relative retention is heavily 
dependent on performance during practice—a measure that may be affected by factors 
other than learning 71. Moreover, if groups underwent different types of intervention during 
practice, the performance at the end of practice is contaminated by the effects of the 
intervention itself, making it an unsuitable measure to compare learning in the two groups. 

Finally, some motor learning studies use curve fitting (e.g., fitting an exponential) 
as a means to quantify ‘rates’ of learning independent of performance level. While this 
argument is true ‘in theory’, this relies on two major assumptions - (i) the form of the 
function actually matches the form of the learning curve (i.e., if an exponential fit is made, 
that the curve is actually exponential), and (ii) the data have very minimal noise, and the 
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function fits these data extremely well at the individual level. Without full knowledge of 
these assumptions, it is difficult to interpret results from curve fitting. 

 
Recommendations 

Minimize baseline imbalances. When initial performances at baseline (i.e., the 
pre-test) are similar between groups, the type of the dependent variable used in the 
analysis has a minimal effect on the outcome - i.e., the use of a change score or the final 
score will lead to similar conclusions. Hence, it is critical to ensure that adequate attempts 
are made to minimize baseline imbalances. This can be done using three strategies - (i) 
increasing sample sizes: small sample sizes are more likely to create baseline imbalances; 
hence, we recommend using adequate sample sizes to ensure that the baseline 
performance reflects the true group means 73,74, (ii) stratifying groups based on initial 
performance including treatment of outliers 75, and (iii) using an analysis of covariance 
(ANCOVA) to adjust for any residual differences in baseline for estimating an unbiased 
intervention effect 76,77. In cases where ‘pre-test’ measurements are either not feasible or 
consistent, it might be helpful just to rely on larger sample sizes and use the final test 
performance as the measure of learning. 

 Interpret results with considerable caution when baseline performances are 
different. When baseline imbalances are inherent to the research question - e.g., when 
comparing age-related differences 78,79 or the effects of neurological injury 80, the research 
question can be ‘ill-defined’ to some degree and the results have to be treated with 
considerable caution since statistical techniques like ANCOVAs that account for baseline 
differences can yield misleading results 81. Instead, it might be fruitful to think about 
potential experiments where ambiguity can be resolved. For example, if a particular study 
shows that rates of learning in children are higher than adults (but is ambiguous because 
children still perform lower in an ‘absolute’ sense relative to the adults), then by extending 
the practice period, one can test in a follow-up experiment whether there is a point where 
the children ‘outperform’ the adults even in terms of absolute levels of performance. This 
result would help resolve the ambiguity since both absolute and rate measures would 
show that the children outperformed the adults. 

 Pre-register learning measures and robustness checks. Again, as with the 
choice of the dependent variable, an important way in improving transparency is to pre-
register the learning measures of the study and make data openly available to other 
researchers. In particular, adding robustness checks (e.g., comparing learning using 
multiple learning measures) to check if the outcomes change with the type of learning 
measures will help improve the interpretation of the study results. 

 

STEP 10: PROCESSING DATA  
Given the fact that most motor learning data inherently involve change in 

performance over time (i.e., there is no ‘stable’ performance), with significant within- and 
between-subject variability, even seemingly standard data analysis procedures can 
sometimes result in ‘artifacts’ that can be misleading. In addition, the effect of non-learning 
related factors on performance (such as fatigue) can also pose challenges during data 
analysis. Therefore, it is important to examine the effects of steps in the data analysis 
pipeline. 
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Pitfalls 
We highlight three examples of artifacts arising in motor learning studies at 

different levels within the data analysis pipeline: 
Experimental artifacts. While the general ‘learning - performance distinction’ is 

well recognized in the context of needing retention or transfer tests 3, many questions in 
motor learning require direct analysis of performance curves - e.g. the study of ‘online’ and 
‘offline’ learning that examine changes in performance ‘during’ and ‘between’ practice 
sessions or even at the level of trials 82–85. One phenomenon observed in these 
experiments is ‘offline consolidation’ (also referred to as ‘reminiscence’ 86), where there is a 
seemingly distinct improvement in performance after a rest break. However, there is a 
potential for performance artifacts (e.g., effects of inhibition or fatigue) in these types of 
analyses 57,87 and it is worth noting that these consolidation effects are typically observed 
in speeded tasks (e.g., produce as many typing sequences in a given time period, or 
tracking moving targets continuously). 

Processing artifacts. General data processing procedures involve some type of 
averaging to reduce the ‘noise’ in the data. However, relying on “averaged” data across 
individuals can substantially alter some types of inferences. From a theoretical point, one 
of the most well-known artifacts due to averaging is the form of the learning curve which 
can differ between power-law and exponentials depending on averaging 88–90. As a result, 
there is potential for artifacts when estimating individual parameters based on group-
averaged data. A second type of averaging that is usually done across trials within a block 
can mask temporary effects like warm-up decrement 17,89 and create the illusion of a 
‘discontinuity’ in the learning curve even when the learning curve is continuous 87. 

Statistical artifacts. In the analysis of individual differences, ‘mathematical 
coupling’ occurs when the response variable directly or indirectly contains all or a part of 
the predictor variable 91. For instance, studies evaluating initial performance to predict ‘gain 
scores’ are expected to see significant associations simply due to the fact that the gain 
score depends on the initial performance. Relatedly, methods that involve creating ‘post 
hoc’ groups based on dichotomizing a continuous response (e.g., analyzing the difference 
between high and low responders based on a median split) have been criticized from a 
statistical viewpoint as creating arbitrary or illusory distinctions 92. It is especially important 
to note that standard procedures used in other domains (such as repeated exposures to 
examine if the ‘response’ is reliable within an individual) are not generally applicable in 
motor learning since it is not possible to wash out prior learning. As a result, results from 
these types of analyses must be treated with even more caution. 

 
Recommendations 

Control experiments for experimental artifacts. In cases where the analysis is 
based on performance curves, the use of control experiments that can disambiguate 
temporary effects of performance from learning are critical. For example, to examine if 
offline learning is truly distinct from ‘recovery from inhibition/ fatigue’ effects, it might be 
useful to manipulate the practice/rest interval or perturb neural activity during rest period 93. 

Robustness checks for processing and statistical artifacts. The impact of 
specific procedures can also be examined by showing how results are impacted by 
changes in specific parameter choices. For example, when using a parameter based on a 
group-averaged curve fit, Reis et al. 11 show sensitivity analyses to changes in this 
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parameter. Using simulated data with known properties can also be a critical tool to check 
the impact of a particular processing procedure. For example, Smeets and Louw 94 showed 
how the decomposition of variability can be sensitive to the choice of variables used in 
defining the task. 

Providing transparent visualization and open data. Finally, it may be difficult (if 
not impossible) for one paper to identify all possible artifacts and/or perform all possible 
robustness checks. Therefore, providing transparent visualizations that go beyond simple 
bar graphs (e.g., showing individual performance curves with minimal or no averaging) 95 
and using open science practices like publicly sharing analysis and data can be extremely 
critical in improving the quality of motor learning science 96. 

 

CONCLUSION 
 
Overall, the pitfalls and recommendations highlight two broad themes in motor 

learning that require attention. The first theme relates to the relevance of motor learning 
studies to the real world. As highlighted earlier, while we agree that definitions of motor 
learning will vary depending on context and discipline, it is perhaps also important to take a 
pragmatic perspective that in some way, the ultimate goal of motor learning experiments is 
to be able to apply this knowledge to the real world. In this regard, while broad ‘principles’ 
of motor learning are often mentioned in the context of fields like rehabilitation 6,97, it is 
difficult to gauge the actual impact of most current motor learning paradigms on these 
fields. For example, a recent review of stroke rehabilitation literature found that only 8% of 
studies even mention ‘basic science’ studies (motor learning experiments in animals or 
humans) in the Introduction 98. We hope that by raising awareness of several issues that 
hamper real-world relevance (choice of task, length of practice duration, etc.), the 
guidelines spur researchers to move outside ‘traditional’ paradigms in their own subfield 
with the goal of increasing relevance. 

A second theme that emerges from the guidelines is the need for initiatives that 
are not just at the level of a single investigator or a lab but at the level of a whole research 
community. As highlighted in the context of developing ‘model task paradigms 2, many of 
the proposed recommendations (larger sample sizes, more groups, increasing practice 
duration, preregistration, sharing open data) require a greater investment of time and effort 
compared to current publication practices. As a result, we hope that the guidelines spur 
discussion not only about larger-scale collaborative efforts, but also the need for 
recognition of such efforts at other levels such as by journal editorial boards, hiring, and 
promotion and tenure committees.  
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