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ABBREVIATIONS 
CI Contextual interference  
biomkj Biomarker of interest 
BLK Blocked 
CLT Cognitive Load Theory 
EEG Electroencephalography 
fMRI Functional Magnetic Resonance Imaging 
fNIRS Functional Near Infrared Spectroscopy 
fei Feature of interest 
HbO Oxygenated hemoglobin 
HbR Deoxygenated hemoglobin 
i 1…n 
j 1 to 4 
L Left region of interest or channel 
LI Laterality index 
MD Maze distance 
R Right region of interest or channel 
RND Random 
RNE Relative neural efficiency 
RNI Relative neural involvement 
PFC Prefrontal cortex 
ΔHbT Total hemoglobin 
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BACKGROUND: “Contextual interference” (CI) describes a counterintuitive phenomenon related to 
practice organization when learning multiple tasks that are presented in a non-repetitive order.  In 
CI, the lack of repetitiveness introduces a high level of interference (e.g., random practice) within 
the learning context such that task performance during initial skill acquisition is frequently poorer 
than if tasks are practiced in a repetitive fashion. However, these learners often perform better on 
retention and transfer tasks than individuals who learn within a low CI environment (e.g., blocked 
practice). High CI acquisition settings require large amounts of cognitive effort; however, the majority 
of research has focused on measuring behavioral outcomes rather than directly investigating 
cognitive load and its relationship to performance. 
AIM: In this paper, we provide a tutorial on several novel ways in which researchers can investigate 
brain activity in a CI paradigm using functional near infrared spectroscopy: Relative neural efficiency 
(RNE), relative neural involvement (RNI), and laterality index (LI). 
METHOD: RNE integrates measures of cognitive effort and behavioral performance; in high CI 
learning environments, RNE should initially be poor (high cognitive effort, low behavioral 
performance), then improve during retention and transfer. RNI provides an index of the relationship 
among motivation, mental effort, and performance. Finally, LI allows for the exploration of 
lateralization between the two hemispheres of the cerebral cortex. We provide data-based examples 
of RNE, RNI, and LI to demonstrate their usefulness in understanding the effects of CI on cognitive 
load. 
RESULTS: Significant differences were found for total hemoglobin (µmolar), RNE and LI for the 
right and left prefrontal cortex regions (p<0.05). The differences were accompanied by moderate-
to-large effect size (Hedge’s g>0.666) with random using less effort, better performance and was 
more oriented to goal orientation and learning processes than blocked who focused more on 
visuomotor attentional components and used more effort with lower behavioral performance scores.  
CONCLUSION: RNE, RNI, and LI provide innovative methods to better understand cognitive effort 
within CI paradigms. 
 
KEYWORDS: Cognitive Load | Prefrontal cortex | Motor learning | Conditions of practice  
 

 

INTRODUCTION 

The term “contextual interference”, originally identified by Battig1 in 1966, describes a counterintuitive phenomenon related to 
practice organization typically within an initial learning environment and its relationship to motor learning. The contextual interference (CI) 
effect results from the organization of practice when learning multiple tasks that are presented in a non-repetitive order. Here, the lack of 
repetitiveness introduces a high level of interference within the learning context (hence the name “contextual interference”) such that task 
performance during initial skill acquisition is frequently poorer than if tasks are practiced in a repetitive fashion. However, these learners 
often perform better on retention and transfer tasks than individuals who learn within a low contextual interference environment2,3. Since 
the 1970’s, researchers have examined the contextual interference effect in motor learning, based on practice organization when learning 
multiple tasks4–6. Within a traditional CI research paradigm, learners are presented tasks in either a blocked (BLK) or random (RND) order 
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during task acquisition. BLK represents a learning environment with low CI; individual skills are presented to the learner repeatedly for a 
fixed number of trials within a task block. The task predictability and repetition within a block leads to both high performance and seemingly 
‘fast’ acquisition for the specific skill. Conversely, learners in a high CI environment, while performing the same number of trials within a 
block, are exposed to multiple tasks in a non-sequential, unpredictable, interleaved order (e.g., RND). RND practice results in high CI and 
concomitant lower performance during acquisition than BLK learning. While acquisition performance suggests superiority of BLK 
scheduling, retention and transfer tests indicate otherwise.  In fact, the high CI that learners experience in the RND group appears to 
ultimately enhance skill learning7,8.   

By their nature, high CI acquisition settings require large amounts of cognitive effort.  To date, the majority of research has 
focused on measuring behavioral outcomes rather than directly investigating cognitive effort as a function of CI. Only in the past 15 years 
have researchers had the methods to explore the neural underpinnings of the CI effect using brain imaging techniques7,9–13.  When studying 
motor learning, brain imaging approaches become more complicated because functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG) devices are highly sensitive to motion artifact, restrict movement, or can be cost prohibitive (especially 
fMRI). Pinti and colleagues14 compared fNIRS with other neuroimaging modalities on several parameters including cost where fNIRS and 
EEG are relatively low in cost in comparison to the high cost of fMRI and PET. In recent years, functional near infrared spectroscopy (fNIRS) 
has become a popular alternative to these techniques.  As a noninvasive, optical brain imaging tool, fNIRS allows researchers to monitor 
changes in hemodynamics within the prefrontal cortex (PFC) related to different cognitive loads. Several studies have looked at the CI 
effect within a cognitive load theory (CLT) framework using fNIRS technology.  For example, Shewokis and colleagues12examined the CI 
effect in ten medical students who were learning laparoscopic surgical techniques via simulation, with half receiving blocked and half 
receiving random practice schedules over four days. Performance measures were tracked and coupled to hemodynamic responses during 
skill acquisition, retention, and transfer. Behavioral and outcome data indicated a CI effect occurred in that the random group performed 
better in retention and transfer, and analysis of oxygenated hemoglobin indicated this behavioral performance benefit was associated with 
lower oxygenated hemoglobin change in the right dorsolateral PFC than the blocked group.   

 
THE PREFRONTAL CORTEX (PFC)  

 
The prefrontal cortex (PFC), the most anterior portion of the frontal lobe, plays an important role in executive function processes 

and is particularly important in the early, stages of learning such as experienced during the acquisition phase during a CI paradigm. The 
PFC plays a key role in planning complex cognitive behavior, decision making, and attentional control, among other functions15–19. Of 
particular interest within CI paradigms are the high-level executive function processes associated with the PFC fundamental to completion 
of goals with associated behaviors such as anticipation, goal establishment, result monitoring, action inhibition, and planning20,21. Further, 
the PFC outlines the execution of programmed sequences of actions and its consequences22. Therefore, active representation of future 
events resulting from behavioral actions are within the realm of the PFC functions, all within a problem-solving structure. 

	

 
Figure 1. The prefrontal cortex and regions of interest with their associated functions17,19, 21. 
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THE PFC, COGNITIVE LOAD, AND FNIRS  
 
Functional Near-Infrared Spectroscopy (fNIRS) is a neuroimaging tool that is non-invasive, portable, affordable, and safe for 

continuous and repeated measurements (Figure 2). fNIRS indirectly measures neural activity using the physiological principles underlying 
neurovascular coupling (i.e., relationship between neuronal activity and cerebral hemodynamics) which then allows for interpretation and 
understanding of task-related activities23,24. Physiologically, neurovascular coupling is based on the oxygen requirements and the delivery 
of oxygen that is used for glucose metabolism via neurons in the neuronal activation process.  The process of increased neuronal activation 
yields increased cerebral blood flow that carries oxygen to the region of use/need through oxygenated hemoglobin (HbO).  This HbO is 
converted to deoxygenated hemoglobin (HbR) when oxygen is released.  To this end, HbO and HbR are the principal absorbers of near-
infrared light for fNIRS applications in which HbO and HbR are used to measure relative concentrations of the various biomarkers and then 
applied in brain activity assessments during the performance of tasks. 

The application of fNIRS involves multiple signal preprocessing techniques to remove artifacts.  These techniques include high 
pass and finite impulse response low-pass filters that use cutoff frequencies of 0.005 Hz and 0.09 Hz to aid improvement with removal of 
instrument and physiological noises and to improve spatial sensitivity and specificity.   Signal quality and channel rejection was done by 
assessing saturation of signals along with high noise levels.   After the artifacts were removed and high noise channels rejected, a modified 
Beer-Lambert Law was applied to the signals to determine the optode (channel) specific measures (16 optodes/channels) for HbO, HbR, 
Oxygenations (HbO – HbR) and HbT (Hb Total = HbO + HbR)19,25. The use of functional near infrared spectroscopy, by providing measures 
of hemodynamic change occurring within the prefrontal cortex, is a non-invasive way in which to examine the learning process and 
intervention efficacy at the level of the brain18,26.  When combined with the behavioral data, fNIR can provide information about cognitive 
load changes, such as improvements in relative neural efficiency and involvement13,27.  

 

 
Figure 2. fNIRs sensor pad designed to collect oxygenation data from the prefrontal cortex. The upper picture shows a series of light sources and detectors.  
The lower picture depicts a participant wearing the fNIRs sensor pad before data collection. 
 

Therefore, it is the purpose of this tutorial to provide both a foundation for researchers interested in delving more deeply into CI 
paradigms to better understand the underlying neural mechanisms in the performance and learning processes.  We specifically focus on 
using fNIRS to measure cortical activity because it is more motion tolerant than other brain imaging techniques and further, is relatively 
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inexpensive, accessible, and easy to learn.  We begin by reviewing CLT, then discuss different ways to measure cognitive effort within a 
CI paradigm, and finally, we provide several applications for use. 
 
UNDERSTANDING COGNITIVE EFFORT WITHIN DIFFERENT CI LEARNING ENVIRONMENTS:  COGNITIVE 
LOAD  

 
One promising theoretical perspective related to instructional strategies that may provide insight into the CI effect is Cognitive 

Load Theory 28,29 (CLT).  Task learning and performance places a burden on a learner’s working memory, which has been termed cognitive 
load. According to CLT, differences in cognitive load that learners experience within various instructional environments may result in distinct 
learning outcomes. CLT suggests that three forms of cognitive load exist: intrinsic, extraneous and germane30–33 (See Figure 3). Intrinsic 
load relates to the inherent quality or complexity of a task or knowledge to be learned; this interacts directly with the learner’s expertise and 
ability to understand new information12. Extraneous load is not associated to the task itself, rather it concerns other factors that indirectly 
affect the learning process, such as how the information is presented, or instructional procedures used32. Finally, germane load 
communicates specifically to the learning process and the mental effort or cognitive resources required to learn a task. Learning paradigms 
that enhance germane load during skill acquisition allow for the positive transfer of previously learned information to assist in the 
construction of new skills. 

 

 
Figure 3. The different types of cognitive load29,30 and their associated regions within the prefrontal cortex9,12,13, 20,23, 26,39. 

 
Paas and colleagues28,34 noted that an instructional strategy that encapsulates both cognitive and motivational effects on learning 

is variability of practice. Contextual interference is considered a type of practice variability when learning multiple tasks.  In a recent review, 
Czyz35 compared and contrasted the differences of practice variability in Schmidt’s Schema Theory and the contextual interference effect. 
Variability, according to Schmidt’s Schema Theory, occurs during practice that involves multiple variations of a motor skill that is associated 
with the same class of movements. Conversely, CI has extended practice variability as motor skill variations may occur within a single class 
of movements or across multiple classes of movements. Thus, the level of variability depends upon the motor skills being tested in a CI 
paradigm35.  Considering CI and having an instructional strategy that can be used to modulate the presentation of task dynamics that can 
inherently reflect realistic learning environments is critical for our understanding and applications of the dimensions of CLT27,29,36. The 
advantage of a RND practice schedule during acquisition is that the changing presentation of the task demands increased cognitive effort 
and increased motivational involvement from the learning which results in more effective schema construction than a BLK practice schedule 
which has minimal task changes3,5. It is well established that learning is best exemplified by assessments of generalization or transfer8,37. 
Given that high CI or RND practice is a form of increased variability of practice relative to a BLK order, it is expected that RND practice 
would facilitate the recall and generalization of acquired cognitive schemas and would result in improved transfer. 
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MEASURING COGNITIVE LOAD WITHIN A CI PARADIGM 
 
Researchers who have studied the CI effect consider practice organization with high CI a type of practice schedule variability 

when learning multiple tasks3,8,13,37. Paas and colleagues28,36 developed several subjective measures as a means to better understand the 
relationship between cognitive workload and performance output that have potential in exploring brain and behavior relationships within a 
CI paradigm.  The first was termed “relative efficiency”, which measures the efficiency of one’s cognitive effort while performing different 
cognitively challenging tasks; the focus of their work was on the application of cognitive effort during the learning of multimedia tasks using 
a subjective effort measure. From their perspective, a high relative ‘cognitive’ efficiency value indicates that an individual performed better 
with a relatively lower amount of cognitive effort. This increased efficiency represents an increase in learners’ skill acquisition by using 
fewer cognitive resources after adequate training and has been applied using more objective measures of cognitive effort (e.g., brain 
imaging) in different environments including simulations and virtual learning13.     
 
RELATIVE NEURAL EFFICIENCY  

 
Optical imaging technology like fNIRS has seen increased use and development of mobile, miniaturized devices that are non-

intrusive38. These technological advancements increase the potential for fNIRS to be used in many real-world learning environments to 
provide objective, task related neural measures of cognitive effort that include behavioral and performance measures for an integrated 
assessment of the learning process across different instructional strategies or (e.g., task types and difficulty levels, practice and feedback 
variables, and levels of expertise – novices vs. expert performers). The use of fNIRS has allowed for a more precise measure of cognitive 
effort in this Paas’ formula, allowing for the calculation of relative neural efficiency (RNE).  RNE combines measures of behavioral output 
with measures of underlying cortical activity (particularly in the prefrontal cortex), thereby quantifying cognitive effort as it relates to 
performance. 

 
RELATIVE NEURAL INVOLVEMENT   

 
Additionally, relative neural involvement (RNI) is another measure that provides a gauge of motivation within a task setting.  This 

measure, originally defined as cognitive involvement, uses similar calculations as RNE but with a different approach to interpreting the 
results.  This RNI approach utilizes the assumptions that motivation, mental effort, and performance are positively related and when applied 
to a novice learning environment, it can help to identify which instructional conditions promote better motivation and therefore overall 
performance. This novel motivational theory stems from the CLT, which entails both mental effort and performance, the resultant physical 
effort, as primary components. This follows the understanding that when learner involvement is higher in a specific task, more mental effort 
is likely being invested. For example, Koiler et al.27 determined that, when performing the non-assembly tasks on the Purdue peg test, 
individuals with ADHD who used a fidget spinner performed similarly and had similar levels of RNI to all age-matched controls. By 
comparison, the ADHD control group had significantly lower levels of RNI than all other groups.  In this case, control participants matched 
effort and performance, whereas in the ADHD groups, the introduction of a fidget spinner appeared to improve overall motivation as well 
as performance. 

Hypothetical examples of RNE and RNI are presented in Figure 4. The perpendicular distance from the neutral efficiency 
condition, E = 0, where Performance = Effort, to each of the points plotted on the Performance–Effort axis is the efficiency value for that 
group. Thus, this graph provides an especially useful visual display of the efficiency, effort and performance relationships.   
 
WHAT RNE AND RNI TELL US   

 
Constructing learning protocols involves careful examination of the components of intrinsic load, namely, task characteristics, 

learner characteristics and the interaction of task characteristics and learner characteristics. The goal of learning protocols is to have a 
performer maintain a sufficient level of motivation to perform the task and ultimately transfer the acquired (learned) skill or materials to a 
novel situation or environment. RNE informs us about learning efficiency within a CI paradigm. Within a CI paradigm, one would predict 
that RNE would be lower (e.g., in the low efficiency quadrant) for the RND group than the BLK group during acquisition.  This relationship 
should reverse during retention and transfer, with the RND group showing higher efficiency values than the BLK group. RNI provides a 
measure of motivation regarding the learning of the tasks. This index of involvement may provide some insight regarding the learning 
paradox of contextual interference. For example, during the acquisition phase, the BLK group may initially be more engaged in the task 
because they experience success with their performance.   
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Figure 4. Hypothetical graphs of a) relative neural efficiency and b) relative neural involvement during a retention test.  In both examples, the red dot 
represents random practice and the blue dot represents blocked practice.  On the left, random practice has resulted in higher performance scores with 
lower cognitive effort as compared to the blocked practice, leading to an RNE value within the high efficiency quadrant.  On the right, both random and 
blocked conditions perform similarly; however, the blocked practice results in higher RNI, suggesting higher cognitive effort in order to achieve the same 
performance.  Those training in a random protocol may have RNE values in the high efficiency quadrant, whereas those training in a blocked protocol may 
have RNI in the high effort quadrant. 
 
CALCULATING RELATIVE NEURAL EFFICIENCY AND INVOLVEMENT   

 
For the relative neural efficiency and relative neural involvement metrics using fNIRS data, any of the four biomarkers can be 

used (e.g., total hemoglobin (ΔHbT)) along with meaningful behavioral performance measures (e.g., maze distance (MD) for a computer 
maze task). RNE metrics calculations are based on the details in Shewokis et al12 in which she used the normalized change in oxygenated 
hemoglobin (ΔHbO) representing quantitative cognitive effort and normalized global score representing performance (Figure 5). RNI 
calculations are based on applications with subjective effort and instructional motivation by Paas34 and colleagues and represented in an 
fNIRS application with a search and surveillance task using a high-fidelity training simulator for unmanned aircraft with normalized 
behavioral performance measures and normalized oxyhemoglobin and deoxyhemoglobin measures39. RNE represents the perpendicular 
distance of the standardized performance score relative to the standardized cognitive effort scores (see equations 1 and 2).   Then RNE 
and RNI (see equation 3) can be plotted as cartesian coordinates for each participant, trial and maze for the retention and transfer phases. 

 

 
Figure 5. Relative neural efficiency and relative neural involvement in the left and right prefrontal cortex following random (blue) and blocked (green) 
surgical simulation protocols. Those participants who trained using random protocol had higher RNE within the high efficiency quadrant, whereas those in 
the blocked protocol had lower RNE within the low efficiency quadrant26. Blocked trained participants had higher RNI for the more difficult transfer task of 
a simulated cholecystectomy and is located in the high involvement quadrant while participants who had the random training elicited lower RNI scores and 
were in the low involvement quadrant. 
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LATERALIZATION INDEX  

 
Another useful measure that can be used to understand the contextual interference effect is the lateralization index40,41.  The 

lateralization index can be used to explore lateralization between the two hemispheres of the cerebral cortex. 
Laterality indices (LI) can be described and calculated for continuous wave fNIRS measurements. The calculation may involve a 

specific set of optodes or regions of interest as well as the identification and specification of a feature of interest of the fNIRS biomarkers. 
Izzetoglu41 used the maximum values of the two channels representing the left PFC and the maximum values for two channels representing 
the right PFC.   
 
WHAT THE LATERALIZATION INDEX TELLS US 
 

The lateralization index provides us with information regarding the strength of activation of the region of interest or hemisphere 
of action. In the schematic below, depicted are the regions of interest in the prefrontal cortex along with the associated functions.  This 
information allows for a more detailed interpretation of the task selection and meaning of the results of the analyses. For example, in 
Izzetoglu and colleagues41, laterality indices were calculated for the acute mediation tasks for oxyhemoglobin and deoxyhemoglobin.   
Findings showed that acute meditation reflects a move toward left frontal lateralization. 

Typically, lateralization indices are reported in table, line graph or box plot formats. To facilitate understanding and simultaneous 
interpretation of the lateralization index, we created a unique graph applying the data visualization benefits of Likert (divergent stacked bar) 
plots superimposed on a topographical map of the prefrontal cortex (see Figure 6). Positive scores indicate a left lateralization (see the 
blue shadings) while negative scores are represented as the red shadings. The neutral zone represents lateralization indices from -0.09 to 
0.09 or close to the zero line. As well, we included horizontal box plots of the blocked and random groups of the peak HbT (see Figure 7) 
which is comparable to the hypothetical distribution in Figure 6. 

 
EXAMPLE 

 
In the protocol investigating the effects of contextual interference when learning simulated surgical tasks across acquisition, 

retention, and transfer phases, Shewokis and colleagues12,13   analyzed one of the biomarkers (peak ΔHbT) for all 11 participants during 
performance of the coordination simulated surgical transfer task. The behavioral measure, global score, represents a composite score of 
accuracy, time, and skill execution it ranges from 0-100%. The normalized peak ΔHbT provides some information about the localized 
cerebral blood flow changes. A post-hoc analysis of the peak ΔHbT for the simulated coordination surgical task transfer was calculated. 
The peak left hemisphere of the PFC (optodes 1-8) and right hemisphere (optodes 9-16) for the peak ΔHbT biomarker for the coordination 
transfer task.  For the RNE measures, both the right and left PFC RNE measures were significant [t(9) = -3.837, p=0.004, Hedges g = 0.826 
and t(9) = -1.285, p=0.045, Hedges g = 0.666], respectively.  RND groups resulted in positive, less variable [M +SD: 0.518 + 0.393; 0.413 
+ 0.542] RNE scores than BLK [M +SD: -0.622 + 0.590; -0.496 + 0.413] for the right and left frontal hemispheres, respectively.  No 
differences were detected for the RNI measures with [t(9)< 1.0, p= 0.703 and 0.986] for the right and left frontal hemispheres, respectively. 
We then calculated the LI for all participants for each trial. An independent samples t-test resulted in t(31) 2.112, p = 0.043 (2-tailed) with 
Hedge’s g = 0.723 (95% Confidence Interval : -1.442, -0.023;  Prediction Interval:  3.38, -1.94). Interestingly, the BLK group showed a more 
right frontal lateralization (mean ± SD; LI = -0.711±1.696) while the RND group was more left frontally lateralized (LI: 0.246 ±0.837). For 
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this virtual reality simulated task, the BLK group focused more on the visuomotor attentional components while RND was more oriented to 
the goal orientation, learning and memory processes.  

 

 
Figure 6. Hypothetical Lateralization Index as divergent stacked bar (Likert) charts. The random group demonstrates a strong left lateralization (dark blue) 
whereas the blocked group demonstrates a strong right lateralization (dark red).  
 

 
Figure 7. Horizontal box plot from blocked and random groups after training on simulated laparoscopic surgery tasks13,26. The top, red box plot is the 
random group and the bottom, blue box plot is the blocked group (A). Topographical map (B) with t-test contrasts comparing the blocked and random 
groups for the coordination transfer task.   The critical t-value is [t(9) = 2.262, p < 0.05, two-tailed] with the colored bar indicating regions of statistical 
significance where teal through dark red colors represent significant differences between blocked and random groups for total hemoglobin (µmolar).  
Contrasts represent average blocked – random differences.  

 
CALCULATING LATERALITY INDICES 

 
The number of channels used to calculate a laterality index is dependent upon the research design and the goals of the research. 

Laterality indices were calculated using Equation (5) for oxygenated, de-oxygenated and total hemoglobin biomarkers for the right and left 
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PFCs which resulted in the average of channels 9-16 and 1-8, respectively.. The laterality index (LI) ranges from -1 to +1. A positive LI 
represented that the person was left lateralized and a negative LI registered the person as right lateralized. 
 

	
 

Where fei = feature of interest (e.g., maximum, mean, median, standard deviation, and so forth); i = 1… n; biomkj = biomarker of 
interest (oxygenated hemoglobin, de-oxygenated hemoglobin, total hemoglobin, and oxygenation); j = 1 to 4; L = left region of interest or 
channel; R = right region of interest or channel. 

Implementation of the laterality index for various tasks and practice organization methods may provide important information and 
insights for the design of future learning protocols.  

 
SUMMARY AND CONCLUSIONS  

 
In 1966, Batting1,4 identified the Contextual Interference effect, which highlighted the importance of conditions of practice during 

the time in which individuals initially learn a skill. The contextual interference (CI) effect occurred when learners experience interference 
during the acquisition phase; this has a negative effect on early performance but a positive effect on skill learning. Within the field of motor 
learning, researchers have studied CI for more than 40 years by primarily focusing on performance outcomes within an experimental 
paradigm where learners are initially presented with practice trials in a randomized (high CI) or blocked (low CI) order. With the advent of 
more accessible brain imaging techniques such as fMRI, EEG, and fNIR, researchers have begun to unpack what is occurring in the brain 
that is driving the CI effect. In particular, the use of fNIRs has allowed researchers to study prefrontal cortex activity as learners actively 
engage in motor and cognitive tasks. In this paper, we describe three useful tools that leverage fNIRs measures of oxyhemoglobin in 
different ways to better understand the prefrontal cortex changes within a CI research paradigm. Two of these measures, relative neural 
efficiency and relative neural involvement, stem from Cognitive load theory and allow for the examination of behavioral performance 
measures within the context of PFC activity. Relative neural efficiency (RNE) looks at the relationship between cognitive effort and 
performance; within a CI paradigm, individuals experiencing high CI should initially have low RNE (indicating high effort with low 
performance) with an eventual shift to high RNE (indicating low effort with high performance). Relative neural involvement, on the other 
hand, provides a measure of participant engagement and motivation using a combination of cognitive effort with performance output. Finally, 
the lateralization index provides a measure of the strength of activation within a region of the PFC. All three measures provide novel ways 
in which researchers can uncover the underpinnings of the contextual interference effect. 
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