
BJMB!!!!!!!!!!Current Opinion
Brazilian(Journal(of(Motor(Behavior(
(
Kainz, Falisse,
Pizzolato
https://doi.org/10.20338/bjmb.v18i1.420
8. Modenese L, Barzan M, Carty CP. Dependency of lower limb joint reaction forces on femoral version. Gait Posture. 2021;88:318-321.
doi:10.1016/j.gaitpost.2021.06.014
9. Veerkamp K, Kainz H, Killen BA, Jónasdóttir H, van der Krogt MM. Torsion Tool: An automated tool for personalising femoral and tibial geometries
in OpenSim musculoskeletal models. J Biomech. 2021;125:110589. doi:10.1016/j.jbiomech.2021.110589
10. Zhang J, Sorby H, Clement J, Thomas CDL, Hunter P, Nielsen P, et al. The MAP client: User-friendly musculoskeletal modelling workflows. Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2014;8789:182–192.
11. Davico G, Lloyd DG, Carty CP, Killen BA, Devaprakash D, Pizzolato C. Multi-level personalization of neuromusculoskeletal models to estimate
physiologically plausible knee joint contact forces in children. Biomech Model Mechanobiol. 2022;21(6):1873-1886.
doi:10.1007/s10237-022-01626-w
12. Hoang HX, Diamond LE, Lloyd DG, Pizzolato C. A calibrated EMG-informed neuromusculoskeletal model can appropriately account for muscle co-
contraction in the estimation of hip joint contact forces in people with hip osteoarthritis. J Biomech. 2019;83:134-142.
doi:10.1016/j.jbiomech.2018.11.042
13. Kainz H, Koller W, Wallnöfer E, Bader TR, Mindler GT, Kranzl A. A framework based on subject-specific musculoskeletal models and Monte Carlo
simulations to personalize muscle coordination retraining. Sci Rep. 2024;14(1):3567.!doi:10.1038/s41598-024-53857-9
14. Pizzolato C, Lloyd DG, Sartori M, et al. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of
muscle excitation and joint moments during dynamic motor tasks. J Biomech. 2015;48(14):3929-3936. doi:10.1016/j.jbiomech.2015.09.021
15. Falisse A, Serrancolí G, Dembia CL, Gillis J, Jonkers I, De Groote F. Rapid predictive simulations with complex musculoskeletal models suggest
that diverse healthy and pathological human gaits can emerge from similar control strategies. J R Soc Interface. 2019;16(157):20190402.
doi:10.1098/rsif.2019.0402
16. Falisse A, Pitto L, Kainz H, et al. Physics-Based Simulations to Predict the Differential Effects of Motor Control and Musculoskeletal Deficits on Gait
Dysfunction in Cerebral Palsy: A Retrospective Case Study. Front Hum Neurosci. 2020;14:40. doi:10.3389/fnhum.2020.00040
17. Koller W, Gonçalves B, Baca A, Kainz H. Intra- and inter-subject variability of femoral growth plate stresses in typically developing children and
children with cerebral palsy. Front Bioeng Biotechnol. 2023;11:1140527. doi:10.3389/fbioe.2023.1140527
18. Kainz H, Killen BA, Van Campenhout A, et al. ESB Clinical Biomechanics Award 2020: Pelvis and hip movement strategies discriminate typical and
pathological femoral growth - Insights gained from a multi-scale mechanobiological modelling framework. Clin Biomech (Bristol, Avon).
2021;87:105405. doi:10.1016/j.clinbiomech.2021.105405
19. Pizzolato C, Shim VB, Lloyd DG, et al. Targeted Achilles Tendon Training and Rehabilitation Using Personalized and Real-Time Multiscale Models
of the Neuromusculoskeletal System. Front Bioeng Biotechnol. 2020;8:878. doi:10.3389/fbioe.2020.00878
20. Xia Z, Devaprakash D, Cornish BM, Barrett RS, Lloyd DG, Hams AH, et al. Predicting Free Achilles Tendon Strain From Motion Capture Data Using
Artificial Intelligence. IEEE Trans Neural Syst Rehabil Eng. 2023;31:3086-3094. doi:10.1109/TNSRE.2023.3296280
21. Pizzolato C, Lloyd DG, Barrett RS, Cook JL, Zheng MH, Besier TF, et al. Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to
the Person for Training and Rehabilitation. Front Comput Neurosci. 2017;11:96. doi:10.3389/fncom.2017.00096
22. Lyons NR, Worsey MTO, Devaprakash D, Salchak YA, Thiel DV, Canning S, et al. Washable Garment-Embedded Textile Electrodes Can Measure
High-Quality Surface EMG Data Across a Range of Motor Tasks. IEEE Sens J. 2023; 23(17):20150–20158.
23. Kainz H, Mindler GT, Kranzl A. Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking. PLoS
One. 2023;18(10):e0291458. doi:10.1371/journal.pone.0291458
Citation: Kainz H, Falisse A, Pizzolato C. (2024). Neuromusculoskeletal modeling in health and disease. Brazilian Journal of Motor Behavior, 18(1):
Editor-in-chief: Dr Fabio Augusto Barbieri - São Paulo State University (UNESP), Bauru, SP, Brazil. !
Associate editors: Dr José Angelo Barela - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Dr Natalia Madalena Rinaldi - Federal University of Espírito Santo
(UFES), Vitória, ES, Brazil; Dr Renato de Moraes – University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
Section editors (Current Opinion): Dr Luis Augusto Teixeira - University of São Paulo (USP), São Paulo, SP, Brazil; Dr Tibor Hortobágyi - University of Groningen, The
Netherlands; Dr Renato de Moraes - University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
Copyright:© 2024 Kainz, Falisse and Pizzolato and BJMB. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non
Commercial-No Derivatives 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Competing interests: The authors have declared that no competing interests exist.
DOI:!https://doi.org/10.20338/bjmb.v18i1.420
e420.