5. Huang T-Y, Chen F-T, Li R-H, Hillman CH, Cline TL, Chu C-H, et al. Effects of acute resistance exercise on executive function: A systematic review
of the moderating role of intensity and executive function domain. Sports Med – Open. 2022;8:141. doi:10.1186/s40798-022-00527-7
6. Zhu Y, Sun F, Chiu MM, Siu AY-S. (2021). Effects of high-intensity interval exercise and moderate-intensity continuous exercise on executive
function of healthy young adults. Physiol Behav. 2021;239:113505. doi:10.1016/j.physbeh.2021.113505
7. Chen Y-C, Li R-H, Chen F-T, Wu C-H, Chen C-Y, Chang C-C, et al. Acute effect of combined exercise with aerobic and resistance exercises on
executive function. PeerJ. 2023;11: e15768. doi:10.7717/peerj.15768
8. Chow Z-S, Moreland AT, Macpherson H, Teo W-P. (2021). The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function.
Sports Med. 2021;51:2483–2506. doi:10.1007/s40279-021-01535-5
9. Ramos-Campo DJ, Caravaca AL, Martínez-Rodríguez A, Rubio-Arias JÁ. Effects of resistance circuit-based training on body composition, strength
and cardiorespiratory fitness: A systematic review and meta-analysis. Biology-Basel. 2021;10(5):377. doi:10.3390/biology10050377
10. Etnier JL, Chang Y-K. The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current
state of the literature. J Sport Exerc Psychol. 2009;31(4):469–483. doi:10.1123/jsep.31.4.469
11. Salthouse TA. What cognitive abilities are involved in trail making performance? Intelligence. 2011;39(4):222-232. doi:10.1016/j.intell.2011.03.001
12. Wen HJ, Tsai CL Effects of acute aerobic exercise combined with resistance exercise on neurocognitive performance in obese women. Brain Sci.
2020;10(11);767. doi:10.3390/brainsci10110767
13. Moreau D, Chou E. The acute effect of high-intensity exercise on executive function: A meta-analysis. Perspect Psychol Sci. 2019;14(5):734-764.
doi:10.1177/1745691619850568
14. Aly M, Kojima H. Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: A
randomized controlled ERP study. Ment Health Phys Act. 2020;19:100363. doi:10.1016/j.mhpa.2020.100363
15. McMorris T, Hale BJ. Is there an acute exercise-induced physiological/ biochemical threshold which triggers increased speed of cognitive
functioning? A meta-analytic investigation. J Sport Health Sci. 2015;4(1), 4-13. doi:10.1016/j.jshs.2014.08.003
16. Wilke J, Giesche F, Klier K, Vogt L, Hermann E, Branzer W. Acute effects of exercise on cognitive function in healthy adults: A systematic review
with multilevel meta-analysis. Sports Med. 2019;49:905-916. doi:10.1007/s40279-019-01085-x
17. Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance; A meta-analysis. Brain Res. 2012;1453:87-101.
doi:10.1016/j.brainres.2012.02.068
18. Burle B, Vidal F, Tandonnet C, Hasbroucq T. Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn.
2004;56(2):153–164. doi:10.1016/j.bandc.2004.06.004
19. Kao S-C, Baumgartner N, Nagy C, Fu H-L, Yang C-T, Wang C-H. Acute effects of aerobic exercise on conflict suppression, response inhibition, and
processing efficiency underlying inhibitory control processes: An ERP and SFT study. Psychophysiol. 2022;59(8):e14032. doi:10.1111/psyp.14032
20. Ozyemisci-Taskiran O, Gunendi Z, Bolukbasi N, Beyazova M. The effect of a single session submaximal aerobic exercise on premotor fraction of
reaction time: An electromyographic study. Clin Biomech. 2008;23(2):231-235. doi:10.1016/j.clinbiomech.2007.08.027
21. Baylor AM, Spirduso WW. Systematic aerobic exercise and components of reaction time in older women. J Gerontol. 1988;43(5):121-126
doi:10.1093/geronj/43.5.p121
22. Audiffren M, Tomporowski PD, Zagrodnik J. Acute exercise and information processing: Energizing motor processes during a choice reaction time
task. Acta Psychologica. 2008;129(3):410-419. doi:10.1016/j.actpsy.2008.09.006
23. Monsell S. Task switching. Trends Cogn Sci. 2003;7(3):134-140. doi:10.1016/s1364-6613(03)00028-7
24. Miyake A, Friedman NP, Emerson M.J., Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to
complex "Frontal Lobe" tasks: A latent variable analysis. Cogn Psychol. 2000;41(1):49-100. doi:10.1006/cogp.1999.0734
25. Tsai C-L, Pan C-Y, Tseng Y-T, Chen F-C, Chang Y-C, Wang T-C. Acute effects of high-intensity interval training and moderate-intensity continuous
exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behav Brain Res, 2021;413:113472.
doi:10.1016/j.bbr.2021.113472
26. McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol.
2021;170:75-88. doi:10.1016/j.ijpsycho.2021.10.005
27. Basso JC, Suzuki WA. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast.
2017;2(2):127-152. doi:10.3223/BPL-160040
28. Fernandez-Rodriguez R, Alverez-Bueno C, Martinez-Ortega IA, Martinez-Vizcamo V, Mesas AE, Notario-Pacheco B. Immediate effect of high-
intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. J Sport Health Sci.
2022;11(3):367-375. doi: 10.1016/j.jshs.2021.08.004
29. Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and
following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121(1):59-65. doi:10.1016/j.brainres.2006.08.105
30. Ferris LT, Williams JS, Shen C-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci
Sports Exerc. 2007;39(4):728-734. doi:10.1249/mss.0b013e31802f04c7.
Citation: Croce RV, Horvat M. (2024). Acute Low- and Higher-Volume Resistance Circuit Training Improves Immediate and Short-Term Cognition in Young Adults.
Brazilian Journal of Motor Behavior, 18(1):e445.